Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(34)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35667370

RESUMO

We report the temperature dependence of the Yb valence in the geometrically frustrated compoundYbB4from 12 to 300 K using resonant x-ray emission spectroscopy at the YbLα1transition. We find that the Yb valence,v, is hybridized between thev = 2 andv = 3 valence states, increasing fromv=2.61±0.01at 12 K tov=2.67±0.01at 300 K, confirming thatYbB4is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction inYbB4is substantial, and is likely to be the reason whyYbB4does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleTv.

3.
J Phys Condens Matter ; 32(14): 144001, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703223

RESUMO

Ru M3-edge resonant inelastic x-ray scattering (RIXS) measurements of [Formula: see text] with 27 meV resolution reveals a spin-orbit exciton without noticeable splitting. We extract values for the spin-orbit coupling constant ([Formula: see text] meV) and trigonal distortion field energy ([Formula: see text] meV) which support the [Formula: see text] nature of [Formula: see text]. We demonstrate the feasibility of M-edge RIXS for 4d systems, which allows ultra high-resolution RIXS of 4d systems until instrumentation for L-edge RIXS improves.

4.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...